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Problem Overview

Initial Conditions: , _
Moon at arrival time

- Arrive at a lunar orbit on October 28% with a @

i 1day budget ~ Moon at TLI
- 8.2 km/s total allotted delta V velocity budget O

- Original Parking Orbit: a = 15 600 km, e = 0.2, Earth’s equatorial plane P

1 =75°% RAAN =0, = 0, v=0

- Final Parking orbit: a = 5 500 km, ¢ = 0.2,
:=110°
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Lamberts Problem - Overview

Lambert’s problem asks:
Given two points in space, P1 and P2, under the influence of a

gravitational field with parameter y, and a transfer time AT

Can we determine a unique solution the Keplerian elements of an
orbit that connects these points?

If this is possible then:

1. Orbit Determination - what are the Keplerian Elements of an
orbit

2. Targeting (two objects reaching the same point in space and time)
3. Rendezvous ( two objects reaching the same point in same, time
and velocity)

Hint.. It is!
(But its not a unique solution)

Given only P1, P2, and AT. Only the SMA is the required variable necessary to
solve for.

From which we can determine e, 1, w, RAAN, TA following this getting the velocity
at this point is trivial




Historical Context:

* Johann Heinrich Lambert first posed Lambert’s Problem
in 1761, formulating the question of determining an orbit
given two positions and a time of flight. However, he did not
provide a rigorous proof.

* Joseph-Louis Lagrange (late 18th century) later analyzed
the problem and contributed to its theoretical foundation,
but gave no practical solution

* It was Carl Friedrich Gauss in 1809 who developed a
complete numerical method to solve the problem, correctly — [EAE—_—_—_—
predicting the orbital path of “1 Ceres” 1023 1500

Figure: Position of planets at the time of Gauss 1809
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Historical Context:

HEHHFHRIFHRIFHFEIFEHRBTEFRIRRRERRFR

The first modern algorithms of Lamberts problem were
employed in the 1950 and are currently being developed
today. Still an open research question

Used in the Apolo missions to make the rendezvous with the
CSM( Command and Service Module ) — reportedly taking
15-30min to perform this calculation

INPUT

(1) RINIT INITIAL POSITION RADIUS VECTOR

(2) VINIT INITIAL POSITION VELOCITY VECTOR

(3) RTARG TARGET POSITION RADIUS VECTOR

(4) DELLT4 DESIRED TIME OF FLIGHT FROM RINIT TO RTARG
(5) INTIME TIME OF RINIT

(6) @D NUMBER OF ITERATIONS OF LAMBERT/INTEGRVS

(7) 2D ANGLE TO 180 DEGREES WHEN ROTATION STARTS

(8) RTX1 -2 FOR EARTH, -10D FOR LUNAR

(9) RTX2 COORDINATE SYSTEM ORIGIN —-- @ FOR EARTH, 2 FOR LUNAR
PUSHLOC SET AT 4D
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OUTPUT

(1) RTARG OFFSET TARGET POSITION VECTOR

(2) VIPRIME MANEUVER VELOCITY REQUIRED

(3) VTPRIME VELOCITY AT TARGET AFTER MANEUVER

(4) DELVEET3 DELTA VELOCITY REQUIRED FOR MANEUVER

https://github.com/chrislgarry/Apollo-11
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Lambert’s maneuver starts

Correction burn I
CHD burn

Correction burn II

Launch

Docking with CSM

# COMPUTE THE DELTA VELOCITY
VLOAD

STORE

VLOAD VSU

STOVL # DELVEET3 = VIPRIME-VINIT
(+7)

STORE
SLOAD BHIZ




Dertvation ot the Solution to Lamberts Equation

Essentially what we’re ultimately looking for is a way to relate time to the true anomaly for a
particular orbit.
Luckly this can be done through Keplet's Equation:

M =E —esin(E)
Where:
M is the mean anomaly (should the orbit be circular and not elliptic how far along would we
be?r)
E is the eccentric anomaly if the orbit were to be an circle where along the path would the
true anomaly be
e 1s the eccentricity

?

P

Auxiliary circle

Fl

Example Use (2) Find Mean Anomaly: \
SMA = 10,000km,t; = 0,t; M = n(t, —t,) | -
= 2000s M = 1.261 rad Figure: Mean Eccentricity as it
e = 0.3 relates to the TA
(1) Find Angular Frequency
n= JZ (3) Using the Bisection method we can (4) Now solve for the True Anomaly 6 :
a’ solve: 1 V1 —e? *sinE
3.98 = 1014 2.161 = E — 0.3 * sin(E) o=t (— S F o
= 10000 * 103 E =156rad 0 = 1.88rad

rad
n=630810"%—
sec
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Dertvation of the Solution to Lamberts Equation

Expanding this to two time measurements:

M, — M, = n[t1 —t, =%+{¢] = E, — e *sin(E;) — (E,—e * sin(E,))

(tz_tl) * ’5 El - Ez — e * Sin(El) + e * Sin(Ez)

This looks useful but its written in terms of Eccentric Anomaly we only have

access to the position vectors.
Thus this must be transformed into a form of of only P, P,and At

This can be done geometrically by finding the cord length C:

90°

120° 60°

150°

180°

210°

240° 300°

270°

Figure: For given P1 and P2 and TOWL, the transfer
ellipse is uniquely determined.

L

-— mm'-

\

Z
SOFIA UNIVERSITY ST. KLIMENT OHRIDSKI | I% o | |



Dertvation of the Solution to Lamberts Equation

Using r = a(1 — e * cos(E)
E1—E,
2

E1—E4
2

and using a substitution of E, = and Ey; =
We find that:

r, + 11 = 2a (1 — ecos(Ep) cos(Ey))

[*] This is power ful because it directly relates the position vectors to its SMA.
But this is unsolvable we need another identity to solve for all the variables here

This is done by using the cord distance:
¢ =|(r —12)l

c? = 4a’ *sin®(Ey) * (1 — e? = cos*(Ep))

This can be combined to obtain:

a
r+1,+c=2a(1-cos(a)) = 4a * sin? (E)

Figure: Geometric Representation of Lambert’s

where: Problem and the Role of the Chord Length in
And a = cos~ (e * cos(Ep)) + Ey Determining the Transfer Orbit
_ -1 _
r+1,—c=2a(1-cos(B)) = 4a * sin? (g) B = cos™ (e xcos(Ep)) — Ey
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Dertvation of the Solution to Lamberts Equation

Going back now to Kepler's Equation: "
g L

(tZ_tl) * 5_3 - E]_ - Ez — e * Sin(El) + e * Sin(Ez)

Incoorprating the geometric properties into leads to: -

(t,—tp) * \/5:3 =[a— p — (sina —sinf)]

where:

Transfer time tr (s) x10

Sln(g): 7‘1+T2+C
2 4a
1 + &) +c
()= 2
2 2a

= Short-path orbit
Long-path orbit

8+

7, =R, +800 km
1, =12n
0=m/3 .

.
A
.

.
. .
----
** »
.....

t,=27.10% PN e
7hours g e WEaeR” " T

Semi-major axis @ (km)x10*

Figure: Solutions to Lambert’s Problem including
multiple rotations
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Methods for the solution to Lamberts Problem

|

SR
|

ocus\of elliptical foci, F'

|

Minimum Energy Transfer:
Hidden focus for the minimum energy transfer lies on the

line between 14,1,

AN

r nsfer

I VA

us of hyperbolic foci, F'
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Numerical Solutions

Using the Universal solution (Battin 1999)

( i
([ a=cos®) , 4 (Z=sn6D) , > 0 (Elliptical) V) =R, 4R, 4. 5B 1
z (\/E) 1 2 m
_ J (cosh(vz))-1 _ ) (sinhy/=Z- (+2)) . z
C(2)= ( - ) ,z <0 5(2)= =7 - < 0 (Hyperbolic) where: R;& R, are the magnatude of the
1,=-0 ! ;= 0 (Parabolic) position vectors
\ ? \ 6’ A is a constant related to the transfer

angle and geometry

w

C 2
F(z,t) = <%) *S(z) + AJY(z) — ut

Goal: Find a z value such that F(z,t) = 0

F(zt)

Solution: Using Newtons Method z; = zy —

d F(zt)




Earth — Mars L.aunch Windows

By solving Lambert’s problem across a range of departure
dates and times of flight, we generate a map of possible

trajectories.
From which we optimize for parameters such as the

required departure velocity (C3), arrival velocity, or total
mission Aw.

Only in the shaded areas 1s where a Ballistic maneuver is

possible.

Remember Lambert solvers solve using Keplerian motion.

Note: Departure Energy = V.Z(Hyperbolic Escape Velocity )
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Arrival Date

Earth-Mars Ballistic Transfer Trajectories
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Practical Implementation for the Earth-Moon Transter

FreeFlyer Plot
02/19/2025

Reduced form of the Porkchop plot as the sl
final date remains fixed — October 28 o
.000 ‘
32.000 ‘
30.000 ‘
“J
We see a clear non- linear relationship el
between the transfer time and required AV % 200 |
E 22.000 \‘
3 20.000 [“.
In my case I used a transfer time of 96hrs  sem
.. km 14.000
(4days) — Requiring a AV = 2.257 ~

10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 55.000 60.000 65.000 70.000 75.000 80.000 85.000 90.000 95.000
Flight Time in Hours

AL
,_5400M

)
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Methods for Entering the Final Orbit

Step 1: Wait until we enter the SOI of the moon

2

Using the equation: Tsp; = SMAyoen * (A’;‘M"O”)E — 66190.4585 km

Earth

Change to Moon Reference frame
Perform an inclination change to i = 110°

Requiring 1 AV — 0499 k_m Burﬂ #2 Oct 28 2024 00:10:13.135029561 UTC
S

Target: Moon
Source: Moon(331° RA, -9° Dec, 93582 km Radius)
FOV: 45°

Step 2: Continue to Periapsis of Hyperbolic Orbit

Step 3: Perform an insertion burn to enter with an
eccentricity of 0.2 from 7.900

Requiring a AV = 0781 Burn #3

\

TnterplanetarySC
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Methods for Entering the Final Orbit

Step 4: Step to the new Orbit Apoapsis
Perform a burn to Raise the periapsis to 4400km

Requiting a AV = 0.171 2 Burn #2

Step 5: Step to the new Orbit Periapsis Oct 28 2024 16:39:44.261766156 UTC
Perform a burn to Raise the Apoapsis to 6600km Target: Earth

o km Source: Earth(297° RA, 45° Dec, 946274 km Radius)
Requiring a AV = 0.259 — Burn #2 FOV: 45°

MoonSC

km
Total AV = z Burns = 3.969T

¥

. "of\b.@p;ﬂ]planetarysc
Final Parameters: s

Arrival date:
Oct 28 2024 16:39:44.261766156

Az 5510.51 km

E: 0.197823823

I: 110.19 deg
RAAN: 255.80 deg
W 04.19 deg
TA: 180.00 deg

\
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