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Initial Conditions:
- Arrive at a lunar orbit on October 28th with a 
± 1day budget
- 8.2 km/s total allotted delta V velocity budget

- Original Parking Orbit: а = 15 600 km, е = 0.2, 
i = 75°, RAAN = 0, ω = 0, ν= 0
- Final Parking orbit: а = 5 500 km, е = 0.2, 
i = 110° 
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Problem Overview



Lamberts Problem - Overview
Lambert’s problem asks: 
Given two points in space, P1 and P2, under the influence of  a 
gravitational field with parameter μ, and a transfer time ΔT, 

Can we determine a unique solution the Keplerian elements of  an 
orbit that connects these points?

If  this is possible then:
1. Orbit Determination  - what are the Keplerian Elements of  an 
orbit
2. Targeting (two objects reaching the same point in space and time) 
3. Rendezvous ( two objects reaching the same point in same, time 
and velocity)
Hint.. It is!
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Pauca sed matura (Few, but ripe)

(But its not a unique solution)

Given only P1, P2, and ΔT. Only the SMA is the required variable necessary to 
solve for. 
From which we can determine e, i, w, RAAN, TA following this getting the velocity 
at this point is trivial 



• Johann Heinrich Lambert first posed Lambert’s Problem 
in 1761, formulating the question of  determining an orbit 
given two positions and a time of  flight. However, he did not 
provide a rigorous proof.

• Joseph-Louis Lagrange (late 18th century) later analyzed 
the problem and contributed to its theoretical foundation, 
but gave no practical solution

• It was Carl Friedrich Gauss in 1809 who developed a 
complete numerical method to solve the problem, correctly 
predicting the orbital path of  “1 Ceres”

Historical Context:

Figure: Position of  planets at the time of  Gauss 1809



• The first modern algorithms of  Lamberts problem were 
employed in the 1950 and are currently being developed 
today. Still an open research question

• Used in the Apolo missions to make the rendezvous with the 
CSM( Command and Service Module ) – reportedly taking 
15-30min to perform this calculation

Historical Context:

# INPUT
# (1) RINIT INITIAL POSITION RADIUS VECTOR
# (2) VINIT INITIAL POSITION VELOCITY VECTOR
# (3) RTARG TARGET POSITION RADIUS VECTOR
# (4) DELLT4 DESIRED TIME OF FLIGHT FROM RINIT TO RTARG
# (5) INTIME TIME OF RINIT
# (6) 0D NUMBER OF ITERATIONS OF LAMBERT/INTEGRVS
# (7) 2D ANGLE TO 180 DEGREES WHEN ROTATION STARTS
# (8) RTX1 -2 FOR EARTH, -10D FOR LUNAR
# (9) RTX2 COORDINATE SYSTEM ORIGIN -- 0 FOR EARTH, 2 FOR LUNAR
# PUSHLOC SET AT 4D
#
# Page 487
# OUTPUT
# (1) RTARG OFFSET TARGET POSITION VECTOR
# (2) VIPRIME MANEUVER VELOCITY REQUIRED
# (3) VTPRIME VELOCITY AT TARGET AFTER MANEUVER
# (4) DELVEET3 DELTA VELOCITY REQUIRED FOR MANEUVER

# COMPUTE THE DELTA VELOCITY
INITVEL6  VLOAD

R2VEC
STORE RTARG1

INITVEL7  VLOAD VSU
VIPRIME
VINIT
STOVL DELVEET3 # DELVEET3 = VIPRIME-VINIT 
(+7)
VTARGET
STORE VTPRIME
SLOAD BHIZ
RTX2

https://github.com/chrislgarry/Apollo-11



Derivation of  the Solution to Lamberts Equation 
Essentially what we’re ultimately looking for is a way to relate time to the true anomaly for a 
particular orbit. 
Luckly this can be done through Kepler's Equation:

𝑀 = 𝐸	 − 𝑒 sin 𝐸
Where: 
M is the mean anomaly (should the orbit be circular and not elliptic how far along would we 
be?)
E is the eccentric anomaly if  the orbit were to be an circle where along the path would the 
true anomaly be
e is the eccentricity 
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𝐸𝑥𝑎𝑚𝑝𝑙𝑒	𝑈𝑠𝑒
𝑆𝑀𝐴	 = 	10,000𝑘𝑚	, 𝑡! = 0	, 𝑡"
= 2000𝑠	
𝑒	 = 	0.3
(1)	Find	Angular	Frequency

𝑛 = #
$!
	

𝑛 =
3.98	 ∗ 10!%

10000 ∗ 10&
	

𝑛 = 6.308 ∗ 10'%
𝑟𝑎𝑑
𝑠𝑒𝑐

(2)	Find	Mean	Anomaly:
M = n t" − t!
M = 1.261	rad

(3)	Using	the	Bisection	method	we	can	
solve:
2.161 = 𝐸	 − 0.3 ∗ sin 𝐸
𝐸 = 1.56	𝑟𝑎𝑑

(4)	Now	solve	for	the	True	Anomaly	𝜃:

𝜃 = tan'!(
1 − 𝑒" 	 ∗ 𝑠𝑖𝑛𝐸
cos(𝐸 − 𝑒) )

𝜃	=	1.88	rad

Figure: Mean Eccentricity as it 
relates to the TA



Derivation of  the Solution to Lamberts Equation 
Expanding this to two time measurements:

𝑀! −𝑀" = 𝑛 𝑡! − 𝑡" 	− 𝑡# + 𝑡# = 𝐸! − 𝑒 ∗ sin 𝐸! − (𝐸"−𝑒 ∗ sin(𝐸"))

(𝑡"−𝑡!) ∗
𝜇
𝑎$

= 𝐸! 	− 𝐸" 	− 𝑒 ∗ sin(𝐸!) + 𝑒 ∗ sin(𝐸")

This looks useful but its written in terms of  Eccentric Anomaly we only have 
access to the position vectors. 
Thus this must be transformed into a form of  of  𝑜𝑛𝑙𝑦	𝑃!𝑃"𝑎𝑛𝑑	∆𝑡 

This can be done geometrically by finding the cord length C:

Figure: For given P1 and P2 and TOF, the transfer 
ellipse is uniquely determined.
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Derivation of  the Solution to Lamberts Equation 
Using 𝑟 = 𝑎(1 − 𝑒 ∗ cos 𝐸
and using a substitution of  𝐸# =

%!&%"
"

	𝑎𝑛𝑑	𝐸' = %!&%!
"

We find that: 
𝑟" + 𝑟! = 2𝑎	(1 − 𝑒 cos 𝐸( cos 𝐸' )	
∗ 	𝑇ℎ𝑖𝑠	𝑖𝑠	𝑝𝑜𝑤𝑒𝑟𝑓𝑢𝑙	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	𝑖𝑡	𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦	relates	the	position	vectors	to	its	SMA.
But	this	is	unsolvable	we	need	another	identity	to	solve	for	all	the	variables	here

This is done by using the cord distance:
𝑐 = | 𝑟! − 𝑟" |

𝑐" = 4𝑎" ∗ sin" 𝐸' ∗ (1	 − 𝑒" ∗ cos" 𝐸( )	

This can be combined to obtain:

𝑟! + 𝑟" + 𝑐 = 2𝑎 	1 − cos 𝛼 = 4𝑎 ∗ sin"
𝛼
2

And 

𝑟! + 𝑟" − 𝑐 = 2𝑎 	1 − cos 𝛽 = 4𝑎 ∗ sin" )
"
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Figure: Geometric Representation of  Lambert’s 
Problem and the Role of  the Chord Length in 

Determining the Transfer Orbit
𝑤ℎ𝑒𝑟𝑒:	
𝛼 = cos&! 𝑒 ∗ cos 𝐸( + 𝐸'
𝛽 = cos&! 𝑒 ∗ cos 𝐸( 	− 𝐸'



Derivation of  the Solution to Lamberts Equation 
Going back now to Kepler's Equation:

(𝑡"−𝑡!) ∗
𝜇
𝑎$

= 𝐸! 	− 𝐸" 	− 𝑒 ∗ sin(𝐸!) + 𝑒 ∗ sin(𝐸")

𝐼𝑛𝑐𝑜𝑜𝑟𝑝𝑟𝑎𝑡𝑖𝑛𝑔	𝑡ℎ𝑒	𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐	𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠	𝑖𝑛𝑡𝑜	𝑙𝑒𝑎𝑑𝑠	𝑡𝑜:

(𝑡"−𝑡!) ∗
𝜇
𝑎$ = [	𝛼 − 	𝛽 − (𝑠𝑖𝑛𝛼	 − 𝑠𝑖𝑛𝛽)]

𝑤ℎ𝑒𝑟𝑒:

sin
𝛼
2 =

𝑟! + 𝑟" + 𝑐
4𝑎

sin
𝛽
2 =

𝑟! + 𝑟" + 𝑐
2 − 𝑐
2𝑎

Figure: Solutions to Lambert’s Problem including 
multiple rotations 
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7hours



Methods for the solution to Lamberts Problem
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Minimum Energy Transfer:
Hidden focus for the minimum energy transfer lies on the 
line between 𝑟!, 𝑟"



Numerical Solutions 
Using the Universal solution (Battin 1999)

C(z)=

(!&+,-( .))
.

, 𝑧 > 0
+,-0 . &!	

. 	 , 𝑧 < 0
!
"
, 𝑧 = 0

 S(z)=

( .&-23( .))
. # , 𝑧 > 0	(𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐𝑎𝑙)

(-230 &.&	( .))
&. # , 𝑧 < 0	 (𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐)
!
4
, 𝑧 = 0	(𝑃𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐)
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𝑌 𝑧 = 𝑅! + 𝑅" + 𝐴 ⋅
𝑧𝑆 𝑧 − 1

𝐶 𝑧
𝑤ℎ𝑒𝑟𝑒: 𝑅!&	𝑅"	𝑎𝑟𝑒	𝑡ℎ𝑒	𝑚𝑎𝑔𝑛𝑎𝑡𝑢𝑑𝑒	𝑜𝑓	𝑡ℎ𝑒
	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝐴	𝑖𝑠	𝑎	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	𝑟𝑒𝑙𝑎𝑡𝑒𝑑	𝑡𝑜	𝑡ℎ𝑒	𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟	
𝑎𝑛𝑔𝑙𝑒	𝑎𝑛𝑑	𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦

𝐹 𝑧, 𝑡 =
𝐶 𝑧
𝑌 𝑧

#
"
∗ 𝑆(𝑧) + 𝐴 𝑌(𝑧) − 𝜇𝑡

Goal:	Find	a	z	value	such	that	F(z,t)	=	0

Solution: Using Newtons Method  z! = 𝑧$ 	−
% &,(
)	%(&,()

	



Figure: Porkchop “Interplanetary Mission Design 
Handbook: Earth-to-Mars Mission Opportunities 2026 to 

2045”
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Earth – Mars Launch Windows

By solving Lambert’s problem across a range of  departure 
dates and times of  flight, we generate a map of  possible 
trajectories.
From which we optimize for parameters such as the 
required departure velocity (C3), arrival velocity, or total 
mission ∆v. 

Only in the shaded areas is where a Ballistic maneuver is 
possible. 

Remember Lambert solvers solve using Keplerian motion.

Note: 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒	𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑉5"(𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐	𝐸𝑠𝑐𝑎𝑝𝑒	𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦	)



Practical Implementation for the Earth-Moon Transfer
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Reduced form of  the Porkchop plot as the 
final date remains fixed –  October 28

We see a clear non- linear relationship 
between the transfer time and required ∆𝑉

In my case I used a transfer time of  96hrs 
(4days) – Requiring a ∆𝑉 = 2.257 -.

/



Methods for Entering the Final Orbit

14

Step 1: Wait until we enter the SOI of  the moon

Using the equation: 𝑟678 = 𝑆𝑀𝐴',,3 ∗
9$%%&
''()*+

"
, = 66190.4585	𝑘𝑚

Change to Moon Reference frame
Perform an inclination change to 𝑖 = 110°
Requiring a ∆𝑉 = 0.499 :9

-
 Burn #2

Step 2: Continue to Periapsis of  Hyperbolic Orbit

Step 3: Perform an insertion burn to enter with an 
eccentricity of  0.2 from 7.900 
Requiring a ∆𝑉 = 0.781 :9

-
	Burn #3



Methods for Entering the Final Orbit
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Step 4: Step to the new Orbit Apoapsis 
Perform a burn to Raise the periapsis to 4400km 
Requiring a ∆𝑉 = 0.171 :9

-
 Burn #2

Step 5: Step to the new Orbit Periapsis  
Perform a burn to Raise the Apoapsis to 6600km 
Requiring a ∆𝑉 = 0.259 :9

-
 Burn #2

𝑇𝑜𝑡𝑎𝑙	∆𝑉 = 	q𝐵𝑢𝑟𝑛𝑠 = 3.969
𝑘𝑚
𝑠

Final Parameters:
Arrival date: 
  Oct 28 2024 16:39:44.261766156
  A:              5510.51 km
  E:        0.197823823
  I:               110.19 deg
  RAAN:            255.80 deg
  W:                64.19 deg
  TA:              180.00 deg
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